Implementasi Algoritma Convolution Neural Network pada Klasifikasi Limbah dengan Arsitektur MobileNet
DOI:
https://doi.org/10.56655/winco.v4i1.196Keywords:
deep learning, CNN, MobileNetAbstract
The waste recycling process can be used as a solution to dealing with waste problems in general. The waste recycling process requires a waste sorting process based on the type of waste. Waste has a lot of negatif impacts on the environment. The negatif impacts can be in the form of air, air and land pollution. By using deep learning-based technology, waste can be classified based on its type. Convolutional Neural Network (CNN) is a deep learning method that is widely used in image classification. Waste classification can help society and the government overcome the negatif impacts of waste. This research uses a CNN architecture, namely MobileNet, for waste image recognition. By using MobileNet, the accuracy results obtained were 93%.
References
H. Peng, N. Shen, H. Ying, and Q. Wang, “Factor analysis and policy simulation of domestic waste classification behavior based on a multiagent study—Taking Shanghai’s garbage classification as an example,” Environ. Impact Assess. Rev., vol. 89, no. October 2020, p. 106598, 2021, doi: 10.1016/j.eiar.2021.106598.
J. Qin, C. Wang, X. Ran, S. Yang, and B. Chen, “A robust framework combined saliency detection and image recognition for garbage classification,” Waste Manag., vol. 140, no. May 2021, pp. 193–203, 2022, doi: 10.1016/j.wasman.2021.11.027.
S. Meng and W. T. Chu, “A Study of Garbage Classification with Convolutional Neural Networks,” Indo - Taiwan 2nd Int. Conf. Comput. Anal. Networks, Indo-Taiwan ICAN 2020 - Proc., pp. 152–157, 2020, doi: 10.1109/Indo-TaiwanICAN48429.2020.9181311.
S. Majchrowska et al., “Deep learning-based waste detection in natural and urban environments,” Waste Manag., vol. 138, no. June 2021, pp. 274–284, 2022, doi: 10.1016/j.wasman.2021.12.001.
Y. Nan, J. Ju, Q. Hua, H. Zhang, and B. Wang, “A-MobileNet: An approach of facial expression recognition,” Alexandria Eng. J., vol. 61, no. 6, pp. 4435–4444, 2022, doi: 10.1016/j.aej.2021.09.066.
H. Oktafiandi, W. Winarnie, and ..., “Perbandingan Algoritma untuk Analisis Sentimen Terhadap Google Play Store Menggunakan Machine Learning,” J. Ekon. dan …, vol. 11, no. 2, pp. 16–21, 2023, [Online]. Available: http://e-journal.polsa.ac.id/index.php/jneti/article/view/234%0Ahttp://e-journal.polsa.ac.id/index.php/jneti/article/download/234/159
W. Winarnie, K. Kusrini, and A. D. Hartanto, “Pengurangan Dimensi dengan Metode Linear Discriminant Analist ( LDA ) Pendahuluan paru-paru . Deteksi dini pencegahan kanker payudara merupakan solusi dari masalah tersebut . Kanker payudara penyebab 22 % kematian oleh kanker pada wanita . [ 1 ]. Algoritm,” Infotek J. Inform. dan Teknol., vol. 6, no. 2, pp. 228–237, 2023.
B. Xu et al., “CattleFaceNet: A cattle face identification approach based on RetinaFace and ArcFace loss,” Comput. Electron. Agric., vol. 193, p. 106675, 2022, doi: 10.1016/j.compag.2021.106675.
E. Prasetyo, R. Purbaningtyas, R. D. Adityo, N. Suciati, and C. Fatichah, “Combining MobileNetV1 and Depthwise Separable convolution bottleneck with Expansion for classifying the freshness of fish eyes,” Inf. Process. Agric., no. xxxx, pp. 1–12, 2022, doi: 10.1016/j.inpa.2022.01.002.
S. Zhang, Y. Chen, Z. Yang, and H. Gong, “Computer Vision Based Two-stage Waste Recognition-Retrieval Algorithm for Waste Classification,” Resour. Conserv. Recycl., vol. 169, no. February, p. 105543, 2021, doi: 10.1016/j.resconrec.2021.105543.
S. Liang and Y. Gu, “A deep convolutional neural network to simultaneously localize and recognize waste types in images,” Waste Manag., vol. 126, pp. 247–257, 2021, doi: 10.1016/j.wasman.2021.03.017.
C. Wang, J. Qin, C. Qu, X. Ran, C. Liu, and B. Chen, “A smart municipal waste management system based on deep-learning and Internet of Things,” Waste Manag., vol. 135, no. January, pp. 20–29, 2021, doi: 10.1016/j.wasman.2021.08.028.
Z. Kang, J. Yang, G. Li, and Z. Zhang, “An Automatic Garbage Classification System Based on Deep Learning,” IEEE Access, vol. 8, pp. 140019–140029, 2020, doi: 10.1109/ACCESS.2020.3010496.
U. Kulkarni, S. M. Meena, S. V. Gurlahosur, and G. Bhogar, “Quantization Friendly MobileNet (QF-MobileNet) Architecture for Vision Based Applications on Embedded Platforms,” Neural Networks, vol. 136, pp. 28–39, 2021, doi: 10.1016/j.neunet.2020.12.022.
Z. Chen, J. Yang, L. Chen, and H. Jiao, “Garbage classification system based on improved ShuffleNet v2,” Resour. Conserv. Recycl., vol. 178, no. November 2021, p. 106090, 2022, doi: 10.1016/j.resconrec.2021.106090.
A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” Arxiv, Comput. Sci. > Comput. Vis. Pattern Recognit., Apr. 2017, doi: https://doi.org/10.48550/arXiv.1704.04861.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hery Oktafiandi, Winarnie Winarnie
This work is licensed under a Creative Commons Attribution 4.0 International License.